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Precise Calculations and Measurements on
the Complex Dielectric Constant of Lossy
Materials Using TM,,,, Cavity
Perturbation Techniques
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AND RENATO G. BOSISIO, MEMBER, IEEE

Abstract— An exact field theory solution for the cylindrical TMg,,
cavity with a coaxial lossy dielectric cylinder is given. The error in the
calculated field solutions is estimated to be less than 1 percent of the true
values. Correction for the cavity holes used to introduce the sample is
taken into account. The exact solution shows that the real part of the
permittivity (¢’) is a complex function of both the frequency shift and the
change in the loaded Q-factor (Q; ). On the other hand the imaginary part
(€”) is nearly proportional to 8(1/Q;) and it has different slopes for
varying frequencies.

By means of active cavity techniques already reported [1], experimental
measurements on ¢’ and ¢” taken at 2.2 GHz on a number of materials
(water, teflon, n-proponal, methanol, etc.) agree with published data within
1 percent even when using large samples.

1. INTRODUCTION
IRCULAR TMy,, cavities have been widely used in

. . . . . i
- microwave measurements of dielectric materials since

1946 [2], and further detailed studies [3], [4] for plasma
diagnostic purposes were carried out in the 196(0°s. This
method of measurement is still of considerable interest due
to the great accuracy (1 percent) derived from new tech-
niques using simple real time automatic frequency mea-
surements as a means of measuring the resonant frequency
shift and the loaded Q-factor (Q; ) variation [1]. As dielec-
tric measurements become more automated it is important
to reduce the requirements on sample geometry and the
allowed range of dielectric values by developing a theory
suitable to interpret experimental data over a wide range of
sample sizes, dielectric properties, and cavity sample inser-
tion holes.

In recent years, the measurement of permittivity of lossy
materials has been becoming more and more important.
Successful work has been reported on the subject of a
transmission line measurement method based on the mea-
surement of impedance [5], [6] or open-ended cavity [7], [8].
Every kind of impedance measurement technique including
the automatic network analyzer has been widely used in
the field of wide-band dielectric permittivity measure-
ments. But, in the published works on the cylindrical
TM,,, cavity perturbation theory only low loss materials
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were taken into account [4], [9], [10]. In this paper we
present an exact theory using field matching techniques
accurate to within 1 part in 103. A dispersion equation is
obtained which allows for large values in both € and ¢”.
The digital computation is done on an IBM 360 computer,
with a CPU time of less than 1 s for calculating a pair of
values of ¢’ and €”. Correction for the presence of a cavity
opening for introducing the sample material is allowed for
in the exact theory. Experimental results are taken and
used to calculated the complex dielectric constant of a
variety of materials. These values are then compared with
published data.

II. THEORY

A. Simple Perturbation Theory

Mathematical complexities are normally avoided by the
use of the simple perturbation theory which can be ex-
pressed for Fig. 1(a) as follows:

, ]
Ep—l:2J12(x01)']T:R%/R% (1)
6;:J12(x01)8(1/QL)R(2)/R12 2)
where
df=h—ts 3)
S(I/QL):l/QLS_l/QLO (4) )
fo resonance frequency of empty cavity;
fs resonance frequency with test sample;
Qo the loaded cavity Q-factor of empty cavity;
Ors the loaded cavity Q-factor of cavity with test
sample;
R, radius of cavity;
R, radius of sample;
Xo1 is the first root of Jy(x)=0; and
€, and €, respectively, real and imaginary parts of the

complex dielectric constant calculated by the
simple perturbation theory.

B. Exact Theory (Lossless Material)

For larger samples, or samples with larger dielectric
constants, a dispersion equation has already been obtained
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Fig. 1. The cylindrical TMy, cavity with coaxial lossy dielectric materi-

als. (a) Single solid dielectric. (b) Liquid or gas test material inside a
dielectric tube.

under the conditions of low loss. For the case illustrated in
Fig. 1(b) the following expression is available [4]:
k 1 ‘]1 ( k 1 Rl )

——————=F(ky,¢,, R, R,.R,)
Jo(klRl) ( g*%2 1 2 0

(5)

where
F= \/:k J121Y022 - Y121J022 _A(J121Y122 o Y121J122)
2no J021Y022 - Y021J022 _A(J021Y122 - Yozllez)

(6.1)
(6.2)

A= Jo00 Y02 —Jo02 Yoo
2 Jooo Y102 — 102 Y000

ko=2mfgleoto (6.3)
k= e, k, (6.4)
k,= Ve, kq. (6.5)

Jupg and Y, . express J,(k,R ) and Y,(k,R,), the Bessel
functions of the first kind and second kind, respectively,
where

n=0or 1

p=0or2

g=0,1o0r2
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€, and ¢, are the relative permittivities of the materials in
region 1 and 2, ¢,, p, are respectively the permittivity and
permeability of free space, and f is the resonant frequency
of the cavity with the material.

The corresponding dispersion equation for case (a) in
Fig. 1 is obtained by allowing R, to approach R, and by
letting €, =¢,. This case corresponds to the use of solid
dielectric materials and the simplified expression for (6.1)
is as follows:

J101Y000 —Jooo Y01
J001Y000 _J000Y001

F(ko, Ry, Rg)=k, (7)
Equations (5)-(7) provide an exact dependence between ¢
and f; for lossless materials. It will later be shown that the
above equations are still rather accurate for 7g6<<0.5 but a
different dispersion equation must be used for cases where
1gd>0.5. The high loss case is very important in dielectric
measurements on biological solutions where both high
dielectric losses and high dielectric constants can exist
simultaneously.

C. Generalized Solution (Lossy Materials)

Only E, and H, fields exist in a cylindrical cavity
resonant in the TM,,, mode. We can write the wave
equation, valid for any value of €*, as follows:

(8)

2
(r—d— + ir +kir )E =0

ar* d
where
k2 =k ek =P — B2 (8.1)
k2:k3(1— ! +ji) (8.2)
202 Q.
e*=¢(1—g8) (8.3)
a2=k§e'(l—5—é—%+%tg8) (8.4)
and

212 _ 1 ___1__
B koe[(l 2Qi)tg8 QL}

The solution of the wave equation (8) is known to be in the
form of Bessel functions when &, is real. However under
consideration of lossy media, k, is complex. We can take
the series form solution as follows:

5 D [k

Ez = 2 ) [Tl] .
n=0 (n')

By substituting (8.1)-(8.5) into (9) and separating into real

and imaginary parts we find

E,=E, +jE/

(8.5)

(9)

(10)

B4r2J2(ar)+ Bsr44J4(ar)---

B =d(ar) =55 3840

(10.1)
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and

Har)+ L2 (ar)
ar)+——J(ar)---|.
3 192004 "°

Ez":ﬁlﬁ

B4r2
2a 24 a2

Ji(ar)— ™

(10.2)

Both equations (10.1) and (10.2) are rapidly convergent
series and, if only the first two terms are taken, the relative
error is smaller than 1 part in 10° whenever ¢’ <(A, /7R,)>
The value of A is equal to the free space wavelength at
resonance. The radius of the sample is in general smaller
than one twentieth of A, (e.g., smaller than 5.0 mm at 3
GHz) so that the first two terms of (10.1) and (10.2) are
sufficient even if €” is as high as 50.

It should also be noted that a similar method for solving
other geometries (rectangular, spherical, etc.) may be em-
ployed. If the imaginary part of the argument of Bessel
functions is small (e.g., |k}r|<0.1|k{r|, where k, =k +jk])
we can take the Taylor’s series expansion as follows:

B,(k\r)=B,(kir)+jkirB,(kir)+---.  (11)
It is easily shown that (11) is an approximate expression of
(10) except in the vicinity of B,(k{r)=0.

The corresponding azimuthal magnetic field may then be

calculated from the following expression:
___1 3
¢ jepg Or

(12)

D. The Dispersion Equation (Exact Theory)

In the first case we assume a cavity made with a low-loss
conductor (e.g. copper, brass, aluminum, etc.) using a
dielectric tube (quartz, pyrex, etc.) to conduct a high-loss
liquid or gas through the cavity. In this case the Q; of the
cavity, with sample, will be mainly determined by the lossy
test sample. The electrical field in the test material can then
be expressed by (10.1) and (10.2). The same field outside
the sample must be a linear combination of the first and
second type of Bessel functions of order zero. Every Bessel
function is expressed with a complex argument in its
Taylor series expansion as shown in (11), and the value of
Jo(koR) is nearly equal to zero. Then by the use of field
matching methods along the cylindrical surface of radius
R, the following dispersion equation is obtained:

dE,
“Ea|. (13)
where E, is given by (10.1) and (10.2) and the complex

function F* is given as follows for cases (a) and (b),
respectively:

=F*(k,e,,R;,R,,R,)

Yio1 timYion —B*(Jio1 HimJio)

F*=f - - 14.1
“ Yom_1771Y101“‘B*(J001_J’71J101) ( )
o RoAE
F;,"—\/;kF; — (14.2)
where

koR ( 1 1 )
= z — 14.3
T 0 0m (14.3)
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Fig. 2. The real part of the permittivity as a function of the resonance
frequency shift and the loaded Q-factor for case of Fig. 1(a) using
perturbation theory and exact theory.

Q;s and Q;, are the Q; factor of cavity with dielectric
sample and empty cavity, respectively,

B*= Yoo —J M0 Y100

] (14.4)
Jooo — 577%)-7200 —JnoJ100

A*=\/57 Yoo2 =jn2 Y102 = B*(Yoo2 =/ 127 102)
2 Yinn +j772Yf02_B*(J102 +j712-]1,02)

Ft =J131%2m — Yi2idon
+j[§1(Y022J1,21 _JOZZYI,ZI)
5V i Yin)]

F =lpgYin —Yadin
+j[§1(Jf21Y122 _J122Yf21)
+6H(Yindin = I Y]

F =J1Yo0 ~ Yoo oz
+j[§1(Y121J022 _J121Y022)
+§2(J122Y021 —YinJo )]

FY =Jo1 Y1 = Yoo1J 122
+j[§1(1122Y121 _J121Y122)
+5(Joa Y122 — You Jin )]

$a=yerm,

—_—t gt
€, =€ TJE;

(14.5)

(14.6)

(14.7)

(14.8)

(14.9)

(14.10)
(14.11)
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Fig. 3. A correction coefficient C relating the exact loss factor (¢”) to
the simple perturbation loss factor (&) as per Fig. 1(a).
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Fig. 4. The correction factor C versus the resonant frequency shift as
per Fig. 1(b). The diameter of the cavity is 102.63 mm and a pyrex
sampling pipe (¢'=4.75, ¢’ =0.04) is used.

and
1 1 1
k=k 1+'—( — )] 14.12
4 200 Qo (4.1
Jupg and Y, express Jn(‘/E;kORq) and Yn(‘/ejkoRq), re-

spectively, and J,, and Y;,, are the derivatives of J,,, and
Y,,,» respectively.

In Fig. 2 the value of € is plotted as a function of
(87/f,) using both the perturbation theory and the exact
theory for different values of Q;. It is seen that the two
theories produce very nearly the same results in most
practical cases ((8f/f;)<0.01, ¢'<10 and for low-loss
materials). The effects of Q; on €’ is only apparent in the
situation of low Q, (=<10%). It must be noted that a
minimum Q-factor (for example 100) is necessary [1] for
practical measurements. For measuring lossy materials, a
smaller sample must be used, and even in such cases, the
simple perturbation theory is still not suitable to interpret
the experimental results. If the problem of low Q; mea-
surement (Q; <100) were solved perfectly, the limitation
of sample size would not be necessary and the reported

theory would be more useful.

In the case of small losses (zgd<<0.5) the use of simple
equation (5) is accurate to within 1 percent. For the exact
solution the imaginary part of the permittivity is also
nearly always proportional to 8(1 /Q;). This property al-
lows us to introduce a correction factor C for the case of
Fig. 1(a) and Fig. 1(b) as shown in Figs. 3 and 4. This C
factor is accurate to within 2 percent for 7gé<1 and to
within 4 percent for 1gé<<4.

Fig. 5 shows the value of ¢’ as a function of 8f/f, in a
series of practical cases in which a pyrex sampling pipe is
used to introduce the test material into the cavity as shown
in Fig. 1(b). Again the perturbation theory is sufficiently
accurate in many practical cases (¢/<30 and Q; >10%).
However, for lossy materials, the ¢’ must be determined by
both 8f/f, and 8(1 /Q; ) using the exact theory.

E. Cavity Opening for Test Sample Insertion
According to the well known cavity theory, the loss in an
empty cavity can be expressed as follows:
1 1 1

O Ono  Orro (1)
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Fig. 5. The real part of permittivity versus the resonant frequency shift
for Fig. 1(b). The diameter of the cavity is 102.63 mm (=2R;) and the
following sampling pipes (€5 =4.75, €5 =0.04) are used: 100 pl (R =
0.684 mm; R, =0.952 mm), 50 1 (R, =0.483 mm; R, =0.845 mm), 20
pl(R;=0.304 mm; R, =0.749 mm), 10 p1 (R, =0.198 mm; R, =0.711
mm), and 5 pl (R;=0.152 mm; R, =0.705 mm).

where Q,,, and Oy, are the O-factor contributed, respec-
tively, by resistive ohmic losses in cavity walls and external
circuits. After the sample is inserted, Q;, is changed into
Qps- and

1 1 1 1 1

0 000 O

05 (16)

where Q¢ and Q, are the contribution of dielectric losses
from sample and sample insertion hole, respectively. @,
and Q, are the new values for the wall and external losses
produced by the new field distributions in the cavity in the
presence of the sample material.

For an exact measurement we must find the loss in the
sample (1/Qg). It is therefore very important to under-
stand the variation of Qp, and Qpy and to calculate the
effects of the sample insertion hole. For this purpose, the
perturbation theory is useful, and it has enough accuracy
because all of these effects are very small (ordinarily a few
percent in both 8f/f, and 6(1/Q) measurement).

By the use of ordinary cavity wall perturbation proce-
dures, one can calculate the ohmic losses in the cavity wall
as follows:

(17)

where R, is the surface resistivity of cavity wall, and H, is
the tangential magnetic field at the cavity wall. Then, an
explicit expression to describe the variation of @, can be

_Rs 2
L,=3 sz, ds

obtained:

_ (e'—l)r?] 18)

1 1
0w  9wo [ 2J2(x61)
where r, =R, /R, is the relative radius of sample.
The power coupled into the external circuits must be
proportional to the square of the intensity of the RF fields

where the coupling element is located. Based on this as-
sumption it can be shown that

- 3(5’—1)r12].

2-]12(3‘01)

1 1
Orx Osro [ (1%)
A second major perturbation by the sample is produced at
the sample insertion hole. Some authors have already dis-
cussed this problem [9], [10], but only the lowest TM,,
mode was taken into account. By the use of the same
procedure, but calculating the mode’s amplitude by means
of the Galerkin method [12], the resonant frequency shift
and the additional loss produced by the sample insertion
hole is obtained [11]. The resonant frequency deviation
contributed by losses is given by

o _ 1 (QLL) (20)

2
By the use of perturbation theory a pair of correction
equations are obtained for the measurement of a lossy
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6. The correction factor of ¢’ due to the sample insertion holes

(dual holes in a TM, cavity).
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Fig. 7. The correction curve of ¢’ due to sample insertion holes, the
variation in cavity wall losses and coupling with external circuit (cavity
size: Ry=51.31 mm; H=40 mm).

dielectric:

e,_1::(611110_1)

n JE(x01) 1 ( 1 3 )
DT Y ¢4 P EL RN, PR SRR
{ h (‘unc“l)Qs 219w Qexo
~(¢me—1) (142571 ) (21)
Yy, e—1( 1 3
"= 172K )+ ( + ) 22
e L Rl oot IC

where €. and €], . are the uncorrected value of ¢’ and ¢”
calculated by means of (13) and (14); h is the relative
height of cavity, h=H /R; and for an example, the correc-
tion constant for Fig. 1(a) configuration is
© A2JH(x
k=3 A (X)) ~0.327
=1

on

(23)

in which 4, is the amplitude of TM,, mode in sample
insertion hole [11].

In a practical example, these effects are shown in Fig. 6
and Fig. 7, respectively. Equations (21) and (22) can also
be used in Fig. 1(b) configuration but the constant K will
depend on dimensions of dielectric tube and the € of
measured sample materials [11].

IIL

Both values of € and €’ were measured by means of
active frequency techniques [1] in a narrow frequency band
2.0 to 2.23 GHz at 22°C; a large variety of test samples
were tried out and the results of some measurements are
given in Table I below.

The frequency stability of the cavity is approximately
2X 1075 and the measurement error in Q, is =125 per-
cent (Q; =500) and =7 percent (Q; =200) [1]. It means
the measurement error is negligible in €’ and less than =+2
percent in €’. A major error arises in the mechanical
measurement of sample size. If a micrometer with an
accuracy of =0.001 in is used, for small sampling pipe, this
error is approximately =1 to +2 percent and this leads to
an error of =2 to =4 percent in ¢’.

The measured results must be revised by the use of
equations (21) and (22). After correction, an error of less
than 1 percent in ¢ and 5 percent in ¢’ is expected.
Comparing the measured value with the ones in the litera-
ture, it can be concluded that the small differences are

EXPERIMENTAL RESULTS
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TABLE I
RESULTS OF MEASUREMENTS ON ¢’ AND €’ USING EXACT FIELD CALCULATIONS, INCLUDING THE EFFECTS OF ALL
NONIDEAL CONDITIONS. ( f=2:23 GHz, T=22°C)

Gf

t

measured € reference value

) 1 :
Material R%in m)Rz = x 103 & (61:) x 103 € une € unc o o o o Ref.
Teflon 3.188 7.17 .012 2.00 <10_3 2.09 ’<10-3 2.106 3X10_q 13,15
Quartz 2.337 3.321 10.29 .026 3.61 0.0032 3.80 0.002 3.78 2.3x10~" 13
Pyrex 2,000 2.997 12.88 0.30 4.63 0.042 T 4,75 0.040 - -
Benzene 1.418 2.121 1.69 .014 2.16 0.0046 2.27 0.0038 2.28 .0028 13
Transformer 2,591 2.756 5.15 .043 2.08 0.0044 2.18 0.0037 2.18 .0028-.006 13,15
0il 10 C
Acetone .688 .978 6.65 0.62 20.2 0.88 20.9 0.85
Methanol .304 749 1.39 1.78 22.0 13.4 22.6 - 13.1 22-24 } 12.5-13.5 7
1 - Octanol .684 .978 0.61 . 0.48 2.82 0.72 2.87 0.70 K
1 - Propanol .305 .756 0.21 0.48 4.14 3.66 4.19 3.63 3.7 -4.4 1.45-2.81 14
2 - Propanol .699 .965 0.92 2.10 3.65 3.02 3.73  2.96 . )
1 - Buthanol 691 .959 0.89 1.36 3.61 2.02 3.70 1.96 3.43-4.0 .87-1.64 14
Water .304 .700 1.214 0.295 74.2 8.80 76.8 8.62 76-78 1 8-12.5 14,15,8
432 .708 2.461 0.563 74.1 8.19 77.4 8.03
intrdduced mostly by the different purity of materials and ?‘g’glaial line,” IEEE Trans. Instrum. Meas., vol. MI-29, pp. 120~ 124,
the difference in operating frequencies and temperatures. (8] E. C. Burdettc, F. L. Cain, and J. Scals, “In vivo probe measure-
: ment technique for determining dielectric properties at VHF through
IV. CONCLUSION microwave frequencies,” IEEE Trans. Microwave Theory Tech., vol.
: ‘ ' o : . MTT-28, pp. 414-427, 1980. ‘
An exact field theory for cylindrical TM,, cavity per- [9] A. J. Estin and H. E. Bussey, “Errors in dielectric measurements
turbation is presented in this paper. The theoretical solu- C}\;le toa Tsalhnple ilnSI\/[ﬂ:?;(I)‘nSh()le igsg Cg‘s’gy,l’ ;(T)gEE Trans. Microwave
. . ’ . . eory Tech., vol. -0, pp. - s .
tion for lossy media shosz;that both real and lmagmary [10] W. Meyer, “Dielectric measurements on polymeric materials by
part of the complex permittivity are a complex function of using superconducting microwave resonators,” IEEE Trans. Micro-
measured resonant frequency shift and variation in loaded wave Theory Tech., vol. MTT-25, pp. 1092-1099, 1977. :
fact A further th 4 1 1 deal ith th [11] S.H. Liand R. G. Bosisio, “Effects of sample insertion hole on the
Q-factor. urther . eor.e 1cal ana yses_ cals w1 € measurement of dielectric constant,” to be published.
effects of the sample insertion hole, coupling elements, and [12] J. P. Montgomery, “On the complete cigenvalue solution of ridged
lossy cavity wall. Among these, the sample insertion hole Wavgigldses”s 1?957115 Trans. Microwave Theory Tech., vol. MTT-19,
: P ’ ” PP
prov1des‘ a major effect on bOth measur'ed ¢ a’nd € ) [13] A. R. von Hippel, Dielectric Material and Appltcatton Cambridge,
Experimental results obtained on various materials show MA: M.LT. Press, 1954, pp. 303-370.
that the active cavity technique [1] is suitable for a wide [14] g ;Fersehus, and B. R?nb){ “Cavity’ p;rgurbatlé)n n;easltllr;aments of
M . : 1€ ectrlc propertles oI vul camzmg rubber and po! yet lylene com-
range of precise measurements: Excludmg the mechanical pounds,” J. Microwave Power, vol. 13, pp. 321334, 1978,
measurement error of sample size, the measurement errors [15] R. F. Harrington, Time Harmonic Electromagnetic Field, New York:

arising from the present theory and measurement system
are less than 1 percent in ¢’ and 5 percent in €”.
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Resonant Frequency Stability of the
Dielectric Resonator on a
Dielectric Substrate

TORU HIGASHI AND TOSHIHIKO MAKINO

Abstract—A simple  approximate method for predicting the resonant
frequencies of TE modes of dielectric resonators is developed. By using
this method, an analytical expression is derived for the resonant frequency
stability of the dielectric resonator on a dielectric substrate, and the effect
of the substrate on the stability is studied. The result is useful when the
high-frequency stability is required.

I. INTRODUCTION

IELECTRIC resonators exhibiting high @ factors

and very low temperature dependence of the reso-

nant frequency have been recently developed [1]-{3]. They

promise to shrink the size and cost of waveguide cavities.

Also, they are useful elements of MIC’s, and have been
applied for filters [4] and oscillators [5]-[7].

A dielectric resonator structure commonly used in prac-

tical MIC’s is that composed of a cylindrical dielectric
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sample placed on a dielectric substrate, one side of which is
metallized as a ground plane, and of a metal tuning screw
placed above the dielectric resonator sample. On the calcu-
lation of such a dielectric resonator structure, several works
have been reported [8], [9]. However, none of them has
described the resonant frequency stability. The degree of
effect of the factors affecting the resonant frequency stabil-
ity must be considered when the high stability is required
especially in a local oscillator application [7].

The purpose of the present paper is to derive the analyti-
cal formula for the resonant frequency stability of the TE
mode dielectric resonator on a dielectric substrate, and to
show how the substrate affects the frequency stability. The
result is useful in determining the temperature coefficient
of the dielectric resonator material to realize the high-
frequency stability in a practical MIC application.

II. APPROXIMATE RESONANT FREQUENCY

The resonant structure under consideration is shown
schematically in Fig. 1. D is the diameter, and L the height
of the dielectric resonator. €;, €,, and €, are the relative
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