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Precise Calculations and Measurements on
the Complex Dielectric Constant of Lossy

Materials Using TMOIO Cavity
Perturbation Techniques

SHIHE LI, STUDENT MEMBER, IEEE, CEVDET AKYEL, MEMBER, IEEE,

AND RENATO G. BOSISIO, MEMBER, IEEE

A Mract- An exact field theory solution for the cylindrical TMOlo

cavity with a coaxiaf Iossy dielectric cylinder is given. The error in the

calculated field solutions is estimated to be less than 1 percent of the true
values. Correction for the cavity holes used to introduce the sample is

taken into aeeount. The exaet solution shows that the reaf part of the
perndttivi~ (c’) is a complex function of both the frequency shift and the

change iu the loaded Q-factor (QJ. On the other hand the imaginary part
(c”) is nearly proportional to i$(l/QJ and it has different slopes for
varying frequencies.

By means of active cavity teefmiques afready reported [1], experimental
measurements on c‘ and c” taken at 2.2 GHs on a number of materiafs

(water, teflon, n-propnnal, methanol, etc.) agree with pubfished data within
1 percent even when rising large samples.

I. INTRODUCTION

c

IRCULAR TMOIO cavities have been widely used in

z microwave measurements of dielectric materials since ‘

1946 [2], and further detailed studies [3], [4] for plasma

diagnostic purposes were carried out in the 1960’s. This

method of measurement is still of considerable interest due

to the great accuracy (1 percent) derived from new tech-

niques using simple real time automatic frequency mea-

surements as a means of measuring the resonant frequency

shift and the loaded Q-factor (QJ variation [1], As dielec-

tric measurements become more automated it is important

to reduce the requirements on sample geometry and the

allowed range of dielectric values by developing a theofy

suitable to interpret experimental data over a wide range of

sample sizes, dielectric properties, and cavity sample inser-

tion holes.
In recent years, the measurement of permittivity of lossy

materials has been becoming more and more important.

Successful work has been reported on the subject of a

transmission line measurement method based on the mea-

surement of impedance [5], [6] or open-ended cavity [7], [8].

Every kind of impedance measurement technique including

the automatic network analyzer has been widely used in

the field of wide-band dielectric perrnittivity measure-

ments. But, in the published works on the cylindrical

TMOIO cavity perturbation theory only low loss materials

were taken into. account [4], [9], [10]. In this paper we

present an exact theory using field matching techniques

accurate to within 1 part in 103. A dispersion equation is

obtained which allows for large values in both c’ and ~“.

The digital computation is done on an IBM 360 computer,

with a CPU time of less than 1 s for calculating a pair of

values of c‘ and c”. Correction for the presence of a cavity

opening for introducing the sample material is allowed for

in the exact theory. Experimental results are taken and

used to calculated the complex dielectric constant of a

variety of materials. These values are then compared with

published data.

II. THEORY

A. Simple Perturbation l%eo~

Mathematical complexities are normally avoided by the

use of the simple perturbation theory which can be ex-

pressed for Fig. l(a) as follows:

where

fi
fs

QLO

QLS

R.

R,

c;– 1=2.1f(xol) %/R~
fo

(1)

C~=J:(Xo1)6(l/Q~ )Ri/R? (2)

~f=fo –fs (3)

~(l/Q~)=l/QLS –l/QLO (4)

resonance frequency of empty cavity;

resonance frequency with test sample;

the loaded cavity Q-factor of empty cavity;

the loaded cavity Q-factor of cavity with test

sample;

radius of cavity;

radius of sample;

is the first root of JO(X)= O; and

respectively, real and imaginary parts of the

complex dielectric constant calculated by the

simple perturbation theory.
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Fig. 1, The cylindrical TMOIO cavity with coaxial lossy dielectric materi-

als. (a) Single solid dielectric. (b) Liquid or gas test material inside a
dielectric tube,

under the conditions of low loss. For the case illustrated in

Fig. l(b) the following expression is available [4]:

klJ*(klR, )
=F(ko, cz, R1, Rz, Ro)

Jo(klR, )
(5)

where

Jlzl Yozz– Y121J022– A(J121Y122 – Y121J122)
F=&ko J y

02102.2- Y02,J022–A(J021Y122 – YOZ1J122)

(6.1)

k. =2~f~& (6.3)

kl =&k. (6.4)

kz=~ko. (6.5)

J~pq and YnP~ express J~(kPR ~) and Y~(:PRq), the Bessel

functions of the first kind and second land, respectively,

where

c, and c~ are the relative permittivities of the materials in

region 1 and 2, co, p o are respectively the permittivity and

permeability of free space, and f~ is the resonant frequency

of the cavity with the material.

The corresponding dispersion equation for case (a) in

Fig. 1 is obtained by allowing R ~ to approach R, and by

letting Cz= c,. This case corresponds to the use of solid

dielectric materials and the simplified expression for (6. 1)

is as follows:

J1OIYOOO–JOWYIO1
F(ko, R1, Ro)=ko J y _J y . (7)

001 000 000 001

Equations (5)–(7) provide an exact dependence between c

and f~ for lossless materials. It will later be shown that the

above equations are still rather accurate for tg~ <0.5 but a

different dispersion equation must be used for cases where

tg~ >0.5. The high loss case is very important in dielectric

measurements on biological solutions where both high

dielectric losses and high dielectric constants can exist

simultaneously.

C. Generalized Solution (Lossy Materials)

Only E, and H+ fields exist in a cylindrical cavity

resonant in the TMo~o mode. We can write the wave

equation, valid for any value of c*, as follows:

( d2

)
r—+$+k~r E2=0

dr2
(8)

where

k~=k2c*=a2_j~2 (8.1)

(kz=k: ~_!- 1

2Q: ‘J~ 1
(8.2)

t*=t’(l–Jt@) (8.3)

and

The solution of the wave equation (8) is known to be in the

form of Bessel functions when k, is real. However under

consideration of lossy media, k, is complex. We can take

the series form solution as follows:

[1E,= ~ W ~ 2“.
~=o (n!)2

(9)

By substituting (8. 1)–(8.5) into (9) and separating into real

and imaginary parts we find

E== E; +jE~’ (10)

E~=Jo(ar)– ~J2(ar)+<J4(ar) . .
8a2 384a

n=oorl

p=Oor2

q=O, 1 or2 (10.1)
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and

~i – @2

[
–= J1(ar)–

~4r2
—J~(ar)+
24a2 1~J5(ar)... .

(10.2)

Both equations (10. 1) and (10.2) are rapidly convergent

series and, if only the first two terms are taken, the relative

error is smaller than 1 part in 103 whenever d’ < (AO /rR1)2.

The value of AO is equal to the free space wavelength at

resonance. The radius of the sample is in general smaller

than one twentieth of A. (e.g., smaller than 5.0 mm at 3

GHz) so that the first two terms of (10.1) and (10.2) are

sufficient even if c“ is as high as 50.
It should also be noted that a similar method for solving

other geometries (rectangular, spherical, etc.) may be em-

ployed. If the imaginary part of the argument of Bessel

functions is small (e.g., lk~rl <0.11 k~r 1,where k, =k~ +jk~)

we can take the Taylor’s series expansion as follows:

%(klr)=%(kjr)+j k~r%(k;r)+ .s”. (11)

It is easily shown that(11) is an approximate expression of

(10) except in the vicinity of Bn(k~r) =0.

The corresponding azimuthal magnetic field may then be

calculated from the following expression:

(12)

D. The Dispersion Equation (Exact Theoiy)

In the first case we assume a cavity made with a low-loss

conductor (e.g. copper, brass, aluminum, etc.) using a

dielectric tube (quartz, pyrex, etc.) to conduct a high-loss

liquid or gas through the cavity. In this case the Q~ of the

cavity, with sample, will be mainly determined by the lossy

test sample. The electrical field in the test material can then

be expressed by (10.1) and (10.2). The same field outside

the sample must be a linear combination of the first and

second type of Bessel functions of order zero. Every Bessel

function is expressed with a complex argument in its

Taylor series expansion as shown in (1 1), and the value of

Jo(kOR) is nearly equal to zero. Then by the use of field

matching methods along the cylindrical surface of radius

RI the following dispersion equation is obtained:

dEz

Ezdr ,=R,
=F*(k, cz, Rl, Rz, Ro) (13)

where EZ is given by (10.1) and (10.2) and the complex

function F* is given as follows for cases (a) and (b),

respectively:

F* =k Y,ol +jr)lY{o, –B*(J1O1 +jqlJ~ol )
a Ym, –jr),Y,o, –B*(&l –jqlJ1ol )

(14.1)

(14.2)

where

(koRn 1 1
%=7

—— _
Q~s Q~o )

(14.3)
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Fig. 2. The reaf part of the perrnittivity as a function of the resonance
frequency shift and the loaded Q-factor for case of Fig. l(a) using
perturbation theory and exact theory.

Q~~ and Q~o are the QL factor of cavity with dielectric
sample and empty cavity, respectively,

Yw –.jqoY*~B*= (14.4)

JW – +q~J2m –jqoJ1w

YW2 –jv2Ylo2 –B*(Jm2 –jq2J102 )
(14.5)

‘*= L Y102+jqzy{oz –B*(.J102 +j7?2J102 )

F; =J121Y022 – Y121J022

+~[{1(Yo22J{21 –J022Y{21 )

+J2(Y121J122 –J121Y122 )] (14.6)

F; =J121Y122 – Y121J122

+j[11(J{21y122 –J122Y;21 )

+{2(Y;22J121 –J{22Y121 )] (14.7)

F? ‘Jo21110Z2– Y021 J022

+j[{1(Y121J022 –J121Y022 )

+{2(J122Y02, – Y122J02,)] (14.8)

F~ =J02,Y,22 _ Y02, J,22

+j[{1(J122Y121 –J121Y122 )

+{2( J021Y{22– Yo21Ji22)] (14.9)

{n= I/qn (14.10)

62 r~~ —j~~ (14.11)



1044 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. Nm~-29, NO. 10, OCTOBER1981

1,4 – <“ : CX 6’;

% ~, ,

12 –

10

8 –

r= 01

,6
t I

1 I I I 1 I i

o 1 2 3 ‘3f 4
—
f~

Fiz. 3. A correction coefficient Crelatim? the exact loss factor (c”) to
theslmple perturbation loss factor-( c;)as per Fig. l(a). ‘ ‘

1

c

095 -

IOPL p,pe

5FI p,pe

09

,,’. Cx .,;

085 1 I 1 1 I I 1 I I
0 5

8f
~ x 103

Fig. 4. The correction factor C versus the resonant frequency shift as

per Fig. l(b). The diameter of the cavity is 102.63 mm and a pyrex
sampling pipe (c’ =4.75, c“ =0.04) is used.

and

~=ko[l+j+(.&&)l(14.12)

J.P~ and Y.p~ express J.(fikoR~) and Y.(fikoR~), re-

spectively, and J~P~ and Y~P~are the derivatives of JIP ~ and

Y,P~, respectively.

In Fig. 2 the value of c’ is plotted as a function of

(8~/~o) using both the perturbation theory and the exact

theory for different values of Q~. It is seen that the two

theories produce very nearly the same results in most

practical cases ((8~/~o) <0.01, c’< 10 and for low-loss

materials). The effects of Q~ on ~’ is only apparent in the

situation of low Q~ (<103). It must be noted that a

minimum Q-factor (for example 100) is necessary [1] for

practical measurements. For measuring lossy materials, a

smaller sample must be used, and even in such cases, the

simple perturbation theory is still not suitable to interpret

the experimental results. If the problem of low Q~ mea-

surement ( Q~ < 100) were solved perfectly, the limitation

of sample size would not be necessary and the reported

theory would be more useful.

In the case of small losses (tgd <0.5) the use of simple

equation (5) is accurate to within 1 percent. For the exact

solution the imaginary part of the permittivity is also

nearly always proportional to 6(1 /QJ. This property al-

lows us to introduce a correction factor C for the case of

Fig. l(a) and Fig. l(b) as shown in Figs. 3 and 4. This C

factor is accurate to within 2 percent for tgtl <1 and to

within 4 percent for tgtl <4.

Fig. 5 shows the value of c’ as a function of 8~/~o in a

series of practical cases in which a pyrex sampling pipe is

used to introduce the test material into the cavity as shown

in Fig. l(b). Again the perturbation theory is sufficiently

accurate in many practical cases (ds 30 and Q~>103 ).

However, for lossy materials, the d must be determined by

both 8f/fo and i$(l/Q~) using the exact theory.

E. Caoity Opening for Test Sample Insertion

According to the well known cavity theory,

empty cavity can be expressed as follows:

1 1 1

Q~o = Qwo + QEXO

the loss in an

(15)
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Fig. 5. The real part of permittivity versus the resonant frequency shift

for Fig. l(b). The diameter of the cavity is 102.63 mm (=2 R ~) and the
following sampling pipes (c5 = 4.75, c!= 0.04) are used: 100 pl (R, =

0.684 mm; R2 =0.952 mm), 50 pl (Rl =0.483 mm; R2 =0.845 mm), 20

pl(R1=0.304 mm; R2=0.749 mm), 10pl(R1=0.198 mm; R2=0.711
mm), and 5 pl (Rl =0.152 mm; R2 =0.705 mm).

where Q ~0 and Q~xO are the Q-factor contributed, respec-

tively, by resistive ohmic losses in cavity walls and external

circuits. After the sample is inserted, Q~O is changed into

QLS, and

11111

Z= QW+QEX+ZF+E
(16)

where Q~ and Qfi are the contribution of dielectric losses

from sample and sample insertion hole, respectively. Q~
and Q~x are the new values for the wall and external losses
produced by the new field distributions in the cavity in the

presence of the sample material

For an exact measurement we must find the loss in the

sample (1 /Q~). It is therefore very important to under-

stand the variation of Q ~ and Q~x and to calculate the

effects of the sample insertion hole. For this purpose, the

perturbation theory is useful, and it has enough accuracy

because all of these effects are very small (ordinarily a few

percent in both tl~/~O and 6(1/Q) measurement).

By the use of ordinary cavity wall perturbation proce-

dures, one can calculate the ohmic losses in the cavity wall

as follows:

JLW=~ H:dS (17)
s

where R, is the surface resistivit y of cavity wall, and Ht is

the tangential magnetic field at the cavity wall. Then, an

explicit expression to describe the variation of Q ~ can be

obtained:

(18)

where r, = R, /R ~ is the relative radius of sample.

The power coupled into the external circuits must be

proportional to the square of the intensity of the RF fields

where the coupling element is located. Based on this as-

sumption it can be shown that

A second major perturbation by the sample is produced at

the sample insertion hole. Some authors have already dis-

cussed this problem [9], [10], but only the lowest TMol

mode was taken into account. By the use’ of the same

procedure, but calculating the mode’s amplitude by means

of the Galerkin method [12], the resonant frequency shift

and the additional loss produced by the sample insertion

hole is obtained [11]. The resonant frequency deviation

contributed by losses is given by

(20)

By the use of perturbation theory a pair of correction

equations are obtained for the measurement of a lossy
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Fig. 6. The correction factor of c’ due to the sample insertion holes

(duaf holes in a TMO,O cavity).
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Fig. 7. The correction curve of c“ due to sample insertion holes, the

variation in cavity wall losses and coupling with externaf circuit (cavity

size: RO =51.31 mm; H=40 mm).

dielectric:

(
~~—1= 6?

unc –1)

{[

J/(xOl)

](

11——— —
“ 1+2Ki 1+ (&C-l)Q~ 2 QWO + Q~xO )}

-I)(1+2K; ) (21)

)(-2K+ ++ *+*) (22)

where C’UCand e‘&C are the uncorrected value of e’ and c”

calculated by means of (13) and (14); h is the relative

height of cavity, h= H/R; and for an example, the correc-

tion constant for Fig. 1(a) configuration is

(23)

in which An is the amplitude of TMO~ mode in sample

insertion hole [1 1].

In a practical example, these effects are shown in Fig. 6

and Fig. 7, respectively. Equations (21) and (22) can also

be used in Fig. l(b) configuration but the constant K will

depend on dimensions of dielectric tube and the d of

measured sample materials [11].

III. EXPERIMENTAL RESULTS

Both values of ~’ and c“ were measured by means of

active frequency techniques [1] in a narrow frequency band

2.0 to 2.23 GHz at 22”C; a large variety of test samples

were tried out and the results of some measurements are

given in Table I below.

The frequency stability of the cavity is approximately

2X 10 ‘G and the measurement error in Q~ is & 1.25 per-

cent (QL > 500) and t 7 percent (QL = 200) [1]. It means

the measurement error is negligible in t’ and less than t 2

percent in c“. A major error arises in the mechanical

measurement of sample size. If a micrometer with an

accuracy of A 0.001 in is used, for small sampling pipe, this

error is approximately A 1 to ~ 2 percent and this leads to

an error of A 2 to A 4 percent in c’.

The measured results must be revised by the use of

equations (21) and (22). After correction, an error of less

than 1 percent in c’ and 5 percent in c“ is expected.

Comparing the measured value with the ones in the litera-

ture, it can be concluded that the small differences are
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TABLE I
RESULTSOF MEASUREMENTSON e‘ AND c” USINGEXACT FIELD CALCULATIONS, INCLUDING THE EFFECTS OF ALL

NONIDEAL CONDITIONS. ( f= 2.23 GHz, T= 22”C)

Material Rl RZ
’31
~. x 103

measured c reference value
6 (+ x 103 E;nc E:nc Ref. ‘

(in mm) QL .’ ~t, c’ ~,r

-3 -3
Teflon 3.188 7.17 .012 2.00 .10 2.09 <10

Quart z 2.337 3.321 10.29 .026 3.61 0.0032 3.80 0.002

Pyrex 2.000 2.997 12.88 0.30 4.63 0.042 4.75 0.040

Benz ene 1.418 2.121 1.69 .014 2.16 0.00h6 2.27 0.0038

Transformer 2.591 2.756 5.15 .043 2.08 0.0044 2.18 0.0037

oil 10 c

Acetone .688 .978 6.65 0.62 20.2 0.88 20.9 0.85

Methanol .304 .749 1.39 1.78 22.0 13.4 22.6 13.1

2.10 3X1O-4 13,15

3.78 2.3x10-4 13

2.28 .0028 13

2.18 .0028-.006 13,15

22-24 12.5 -13.5 7

1 - Octanol .684 .978 0.61 0.48 2.82 0.72 2.87 0.70

1 – PrOpanOl .305 .756 0.21 0.48 4.14 3.66 4.19 3.63 3.7 -h.4 1.45-2.81 14

2 - Propanol .699 .965 0.92 2.10 3.65 3.02 3.73 2.96

1 - Buthanol ,691 .959 0.89 1.36 3.61 2.02 3.70 1.96 3.43-4.0 .87-1 .64 14

Water .304 .700 1.214 0.295 74.2 8.80 76.8 8.62
76-78 8-12.5 14,15,8

.432 .708 2.461 0.563 74.1 8.19 77.4 8.03

introduced mostly by the different purity of materials and

the difference in operating frequencies and temperatures.

IV. CONCLUSION

An exact field theory for cylindrical TMOIO cavity per-

turbation is presented in this paper, The theoretical solu-

tion for lossy media shows that both real and imaginary

part of the complex permittivity are a complex function of

measured resonant frequency shift and variation in loaded

Q-factor. A further theoretical analyses deals with the

effects of the sample insertion hole, coupling elements, and

lossy cavity wall. Among these, the sample insertion hole

provides a major effect on both measured c’ and c“,

Experimental results obtained on various materials show

that the active cavity technique [1] is suitable for a wide

range of precise measurements. Excluding the mechanical

measurement error of sample size, the measurement errors

arising from the present theory and measurement system

are less than 1 percent in c’ and 5 percent in c“.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

REFERENCES

C. Akyel, R. G. Bosisio, and G. E. April, “An active frequency
technique for precise measurements on dynamic microwave cavity
perturbations: IEEE Trans. InStrum. Meas., vol. IM-27, pp. 364-
368, 1978.
F. Homer et al., “Resonance methods of dielectric measurements at
centimeter wavelengths,” Proc. Inst. Elec. Eng., (London), vol. 93,

pt. III, pp. 53-68, 1946.
B. Agdur and B. Enander, “Resonance of a microwave cavity

partiafly filled with a plasma: .T. Appl. Phys., vol. 33, pp. 575-581,
1962.
D. Lukac, “The determination of electron density by means of a
cylindrical TMOIO microwave cavity,” Brit. J. Appl. Phys., vol. 1, pp.
1495-1499, 1968.
M. A. Rzepecka, S. S. Stuchly, and M. A. K. Hamid, “Modified
infinite sample method for routine permittivity measurements at
microwave frequencies,” IEEE Trans. Instrum. Mess., vol. lM-22,
pp. 41–46, 1973.

S. S. Stuchly, M. A. Stuchly, and B. Carrado, “Permittivity measure-
ments in a resonator terminated by an infinite sample,” IEEE
Trans. Instrum. Mess.j vol. IM-27, pp. 436-439, 1978.
H. E. Bussey, “Dielectric measurements in a shielded open circuit

[8]

[9]

10]

11]

comial line,” IEEE Trans. Instrum. Mea-s., vol. MI-29, pp. 120– 124,
1980.
E. C. Bnrdette, F. L. Cain, and J. Seals, “In vivo probe measure-
ment technique for determining dielectric properties at VHF through
microwave frequencies” IEEE Trans. Microwave Theory Tech., vol.
MTT-28, pp. 414-427, 1980.
A. J. Estin and H. E. Bussey, “Errors in dielectric measurements
due to a sample insertion hole in a cavity,” IEEE Trans. Microwaue
Theoty Tech., vol. MTT-8, pp. 650-653, 1960.
W. Meyer, “Dielectric measurements on polymeric materials by
using superconducting microwave resonators,” IEEE Trans. Micro-

waoe Theory Tech., vol. MTT-25, pp. 1092– 1099, 1977,
S. H. Li and R. G. Bosisio, “Effects of sample insertion hole on the
measurement of dielectric constant,” to be published.

[12] J. P. Montgomery, “On the complete eigenvafue solution of ridged
waveguide,” IEEE Trans. Microwave Theory Tech., vol. MTT- 19,

pp. 547-555, 1971.

[13] A. R. von Hippel, Dielectric Material and Application. Cambridge,
MA: M.I.T. Press, 1954, pp. 303-370.

[14] B. Terselius, and B. Ranby, “Cavity’ perturbation measurements of
dielectric properties of vulcanizing rubber and polyethylene com-
pounds,” J. Microwave Power, vol. 13, pp. 327-334, 1978.

[15] R. F. Barrington, Time Harmonic Electromagnetic Field, New York:
McGraw-Hill, 1961.

*

Shihe LI (S’81) was born in Chongqing, Sichuan,
China, on April 28, 1941. He graduated from the
Chentu Institute of Radio Engineering, China, in
1963 and finished his graduate program at the
Department of Physics, Nanking University,
China, in 1966.

From 1968 to 1979, he was a research engineer
at the Fourth Research Institute, Ministry of
Posts and Telecommunications, China. He had
engaged in the development of high-efficiency
reflector antennas, microwave ferrite materials,

low-loss nonreciprocal microwave devices and microwave IC’S. He arrived
at the Ecole Polytechnique de Montreal, Montreal, Canada in 1980 as a
visiting scholar and he is currently working for his Ph.D. degree. His
interests are in the electromagnetic theory, computer-aided microwave
design and measurement, microwave IC’S, microwave power and anten-
nas.



1048 1S3EE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-29, NO. 10, OCTOBER 1981

Cevdet Akyel (S’74- M79) was born in Samsun, Renato G. Bosisio (M79) was born in Monza,
Turkey, on July 15, 1945. He received the B. SC. Italy, on June 28, 1930. He received the B. SC.

degree in electrical engineering from the Techni- degree from McGill University, Montreal, P. Q.,

caf University of Istanbul, Istanbul, Turkey, in Canada, in 1951, and the M. S.E.E. degree from

1971, and the M. SC.A. degree in microwave mea- the University of Florida, Gainesville, in 1963.

surements on plasma properties at the Ecole He has been engaged in microwave R & D

Polytechnique, University of Montr&d, P. Q.,

Canada, in 1975.

work with various firms in Canada (Marconi and
Vrsrian) in the U.S. (Sperry), and in England

From 1971 to 1973, he was a Research Assis- (English Electric). He is presently Head of the

tant at the Technical University of Istanbul where Section d’Electromagn6tisme et d’Hyperfre -
he carried out the first Turkish experiments on quences at the Ecole Polytechnique de Montreal,

holography. From 1974 to 1976, he worked as a System- Engineer in Montr&l, P. Q., Canada, where he teaches mi&owave” and is actively
multiplex and microwave transmission at the Northern Telecom Com- engaged in microwave power applications, instrumentation and dielectric
pany, Montr%l, P.Q., Canada, He received the Ph.D. degree in 1980 in measurements.
electncaf engineering from Ecole Polytechnique, University of Montreal. He is a member of Phi Kappa Phi, Sigma Xi, and l’Ordre des Ingenieurs
His activity is mainly in microprocessor controlled microwave active du Quebec.
systems for dielectric measurements. He is currently working as a Post-
doctoral Fellow in the same University.

Resonant Frequency Stability of the
Dielectric Resonator on a

Dielectric Substrate

TORU HIGASHI AND TOSHIHIKO MAKINO

,4bstract—A simple approximate method for predicting the resonant
frequencies of TE modes of dielectric resonators is developed. By using

this method, an analytical expression is derived for the resonant frequency
stability of the dielectric resonator on a dielectric substrate, and the effect
of the substrate on the stability is studied. The result is useful when the
high-frequency stability is required.

I. INTRODUCTION

D IELECTRIC resonators exhibiting high Q factors

and very low temperature dependence of the reso-

nant frequency have been recently developed [ 1]–[3]. They

promise to shrink the size and cost of waveguide cavities.

Also, they are useful elements of MIC’S, and have been

applied for filters [4] and oscillators [5]–[7].

A dielectric resonator structure commonly used in prac-

tical MIC’S is that composed of a cylindrical dielectric
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sample placed on a dielectric substrate, one side of which is

metallized as a ground plane, and of a metal tuning screw

placed above the dielectric resonator sample. On the calcu-

lation of such a dielectric resonator structure, several works

have been reported [8], [9]. However, none of them has

described the resonant frequency stability. The degree of

effect of the factors affecting the resonant frequency stabil-

ity must be considered when the high stability is required

especially in a local oscillator application [7].

The purpose of the present paper is to derive the analyti-

cal formula for the resonant frequency stability of the TE

mode dielectric resonator on a dielectric substrate, and to

show how the substrate affects the frequency stability. The

result is useful in determining the temperature coefficient

of the dielectric resonator material to realize the high-

frequency stability in a practical MIC application.

II. APPROXIMATE RESONANT FREQUENCY

The resonant structure under consideration is shown

schematically in Fig. 1. D is the diameter, and L the height

of the dielectric resonator. c~, c~, and C, are the relative
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